
Stern- und 
Planetenentstehung 
Sommersemester 2020 
Markus Röllig 
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VORLESUNG/LECTURE 

Raum: Physik - 02.201a  

dienstags, 12:00 - 14:00 Uhr 

 

SPRECHSTUNDE: 

Raum: GSC, 1/34, Tel.:  47433, (roellig@ph1.uni-koeln.de) 

dienstags: 14:00-16:00 Uhr 

 

Nr. Thema Termin 

1 Observing the cold ISM 21.04.2020 

2 Observing Young Stars 28.04.2020 

3 Gas Flows and Turbulence 
Magnetic Fields and Magnetized Turbulence 

05.05.2020 

4 Gravitational Instability and Collapse 12.05.2020 

5 Stellar Feedback 19.05.2020 

6 Giant Molecular Clouds 26.05.2020 

7 Star Formation Rate at Galactic Scales 02.06.2020 

8 Stellar Clustering 09.06.2020 

9 Initial Mass Function – Observations and Theory 16.06.2020 

10 Massive Star Formation 23.06.2020 

11 Protostellar disks and outflows – observations and 
theory 

30.06.2020 

12 Protostar Formation and Evolution 07.07.2020 

13 Late Stage stars and disks – planet formation 14.07.2020 

 



9 INITIAL MASS FUNCTION – OBSERVATIONS AND THEORY 

IMF: how does a cluster break up into individual stars 

9.1 OBSERVATIONS 
• direct star counts 

• integrated light from more distant regions 

9.1.1 Resolved Stellar Populations 

9.1.1.1 Field Stars 

1st attempt: Salpeter (1955), stars in solar neighborhood 

Steps to measure IMF of the field stars in some volume or angular region 

around the sun? 

CONSTRUCT THE LUMINOSITY FUNCTION 

• absolute luminosities require distances (also to determine which 

stars fall into a volume limited sample) 

• most accurate: parallax measurements 

o IMF needs to be sampled down to low masses 

o low mass stars are very dim 

o parallax of dim stars hard to determine 

 

E.g.: 𝑀~0.1 𝑀⊙ => V band magnitudes 𝑀𝑉~14 , parallax catalogs at such 

magnitudes usually available out to 5-10 pc, i.e. 200-300 stars. 

(OUTDATED) 

• less accurate but much larger samples 

color-magnitude diagrams (CMD) calibrated with solar 

neighborhood stars 

o stars with unknown distance are assigned an absolute 

magnitude based on their color and the CMD. 

𝑚 − 𝑀 = 5 log (
𝑑

1𝑝𝑐
) − 5 

 

distance modulus 

𝑚 − 𝑀 

m: apparent mag. 

M: abs. mag. 
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• spectral parallax method (analog to CMD, but with spectral-type – 

magnitude diagrams STMD) 

Abbildung 1 Bochanksi et al. 2010, Copyright of the AAS  
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BIAS CORRECTION 

• Metallicity Bias 

o metallicity gradient in Galaxy, remote stars will have lower 

average metallicity 

o lower metallicity stars: higher Teff and earlier spectral types 

o sub-solar stars will be assigned too high abs. luminosities 

based on color (-> too large distances) 

o correction with known metallicity gradient 

 

 

 

 

 

 

 

 

 

  

Abbildung 2 Tinney et al. 2014, The Luminosities of the Coldest Brown Dwarfs, Copyright of the AAS 

Figure 1 Bochanksi et al. 2010, Copyright of the AAS 
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• Extinction bias 

o dust extinction reddens starlight 

o more distant stars are artificially red -> low magnitudes 

o abs. magnitudes and distances are underestimated 

o correction with known extinction curve (and known? amount 

of extinction per distance) 

 

 

• Malmquist bias (Malmquist 1922) 

o scatter of magnitudes of stars at fixed color (up or down) 

o effect on stars at distance or magnitude limit of survey 

o Correction if scatter distribution and sample selection is 

known 

Abbildung 3 Bochanski et al. 2010, Luminosity function (LF) for Milky Way stars before (left) and after (right) extinction correction. 
Copyright of the AAS 
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Figure 2 Bochanski et al. 2010 Copyright of the AAS 

Abbildung 4 Malmquist bias. Inverse square law makes all stars below red curve invisible in the sample. As a consequence, from the 
more distant stars, only the brighter ones are visible shifting the apparent average luminosities within a volume to higher values. 
Any inherent scatter of stellar luminosities close to the limit will remove these stars from the sample if they scatter below the red 
curve, shifting the average line to higher values. This effect is asymmetric, because if they scatter to higher luminosities the effect on 
the average curve is much smaller because they stay in the sample. 
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• Binarity bias 

o many stars are members of a binary system 

o remote binaries unresolved (and mistake for a single star) 

▪ binary of unequal mass 𝑞 =
𝑀2

𝑀1
≲ 0.3 

• color and magnitude dominated by massive 

companion 

• low mass companion invisible (missed) 

▪ equal mass binaries 𝑞 ∼ 1 

• color stay the same 

• CMD assigns luminosity of single star (true 

luminosity twice that high) 

• underestimate the distance 

• artificially scatter the system into the survey (if 

volume limited) or out of survey (if luminosity-

limited) 

o correction if binarity fraction of mass ratio is known 

MASS-MAGNITUDE RELATION 

• Convert LF into a mass function 

o requires a mass-magnitude relation (MMR) 

Abbildung 5 Bochanski et al. 2010, Luminosity function (LF) for Milky Way stars before (left) and after (right) binary bias 
correction (assuming various binarity fractions). Copyright to AAS 
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▪ theoretical modelling, empirical, or both 

 

 

 

 

 

 

 

 

  

 

Result -> IMF for stars up to ~ 0.7 𝑀⊙ 

 

 

AGE CORRECTIONS 

• higher mass stars evolve off the main sequence on time scales 

comparable to the mean stellar age in the solar neighborhood 

• we measure a present-day mass function (PDMF) 

 

If we know the SF history 𝑀∗
̇ (𝑡) and the initial, mass-dependent main-

sequence stellar lifetime 𝑡𝑀𝑆(𝑀), then the total number of stars formed 

in the full lifetime of the Galaxy is: 

𝑑𝑁𝑓𝑜𝑟𝑚

𝑑𝑀
=

𝑑𝑁

𝑑𝑀
∫ 𝑀∗

̇ (𝑡)𝑑𝑡
0

−∞

 

𝑡 = 0 is today, and 𝑑𝑁/𝑑𝑀 is the IMF. 

The number of stars still on the main sequence is: 

𝑑𝑁𝑀𝑆

𝑑𝑀
=

𝑑𝑁

𝑑𝑀
∫ 𝑀∗

̇ (𝑡)𝑑𝑡
0

−𝑡𝑀𝑆(𝑀)

  

Abbildung 6 Delfosse at al. 2000, Copyright ESO 2000 
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𝑑𝑁𝑀𝑆/𝑑𝑀 is measured. This allows to correct for the IMF by scaling the 

number of observed stars by the fraction of stars in that mass bin that are 

still alive today 

𝑑𝑁

𝑑𝑀
∝

𝑑𝑁𝑀𝑆

𝑑𝑀

∫ 𝑀∗
̇ (𝑡)𝑑𝑡

0

−∞

∫ 𝑀∗
̇ (𝑡)𝑑𝑡

0

−𝑡𝑀𝑆(𝑀)

     

Limited to masses below a few solar masses. 

 

9.1.1.2 Young Clusters 

More massive stars need different techniques – survey of young clusters. 

General approach is the same as for field stars, with some advantages. 

• population is young enough for even the most massive stars to 

remain on the MS (PDMF=IMF) 

• population uniform in metallicity -> no bias 

• population about the same distance -> no extinction or Malmquist 

bias. 

o distance is better known from radio interferometry 

• Low-mass stars and brown dwarfs are much more luminous if still 

young 

Disadvantages 

• bad statistics, closest cluster where stars can be resolved: Orion 

Nebula Cluster (D=415pc, only 103-104 stars, compared to ~106 stars 

in largest field star survey, most massive star on 𝑀 = 38M⊙) 

• MMR is much more complicated because metallicity changes over 

lifetime 

• youngest cluster still have significant dust content  

• mass segregation (most massive stars cluster in the center, low 

mass stars in the outskirts). Difficult to measure the IMF over the 

whole cluster. Extinction not uniform. 

• Dynamical effects problematic: runaway stars (O and B stars with 

v~50 km/s, ejected from cluster), tidal stripping will preferentially 

remove outskirt stars from cluster (i.e. low-mass stars) 
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• Binary fraction for young cluster much less well known than for field 

stars. 

9.1.1.3 Globular Clusters 

 

• Globular clusters are old, lack massive stars 

• study IMF in conditions very different from young clusters 

• template for studying unresolved SF 

• dynamical effects much worse because of long lifetime 

o low mass stars are systematically lost (two-body evaporation) 

9.1.1.4 General Results 

• IMF appears to be fairly universal 

• Exception: Nuclear Cluster of the 

MW with a flatter IMF (~1.7 

compared to 2.35 Lu et al. 2013) 

 

 

 

Update:  

The Gaia mission has by now has (parallax, position, eigen velocity) 1.3 

billion stars measured! Luminosities are available for 77 million stars. 

The survey represented by Gaia DR2 is essentially complete between G=12 

and G=17 mag. 

At G<7 mag, however, there are still many sources missing from the 

catalogue, primarily due to the difficulties of treating saturated CCD 

images (with no stars brighter than G=1.7 mag appearing in GaiaDR2). 

Fainter than G=17 mag, the completeness is affected by a combination of 

data processing limitations in crowded fields and the filtering applied 

before publication. 

Figure 3 Lu et al. 2013, copyright to AAS 
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Based on Gaia DR2 data Sollima (2019) derived the IMF for sample of 

more than 120 000 stars in the solar neighborhood, with parallaxes, 

magnitudes and colors from the DR2: 

• The shape of the initial mass function is well represented by a 

segmented power law with two breaks at characteristic masses.  

• It has a maximum at M ∼ 0.15 M⊙ with  

o significant flattening (possibly a depletion) at lower masses 

and  

o a slope of α = −1.34 ± 0.07 in the range 0.25 < M/M⊙ < 1.  

• Above 1 M⊙, the initial mass function shows an abrupt decline with 

a slope ranging from α = −2.68 ± 0.09 to α = −2.41 ± 0.11, depending 

on the adopted resolution of the star formation history.  

A slope of -2.7 is significantly steeper than what has been proposed (e.g.  

Kroupa, Salpeter, Chabrier) before high resolution data from Hipparcos 

(2010) & Gaia (2018) became available. 

9.1.2 Unresolved Stellar Populations 
Resolved studies: only Milky Way (and Magellanic Clouds for 𝑀 > 1𝑀⊙) 

9.1.2.1 Stellar Population Synthesis Methods 

• start with proposed IMF 

Figure 4 Credits: Arenou et al. 2018 A&A 616, A17 (2018) 
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• predict stellar light from stellar population with mass 𝑀∗ (𝐿𝑉(𝑀, 𝑡): 

predicted specific luminosity of star with mass M and age t) 

 

𝐿𝑉 = 𝑀∗ ∫
𝑑𝑁

𝑑𝑀
𝐿𝑉(𝑀, 𝑡)𝑑𝑀

∞

0

 

• given a specific star formation history on must further integrate 

over it: 

𝐿𝑉 = ∫ �̇�∗ ∫
𝑑𝑁

𝑑𝑀
𝐿𝑉(𝑀, 𝑡)𝑑𝑀

∞

0

𝑑𝑡
∞

0

  

 

• comparison of predicted spectrum with observed one 

• select particular photometric filters to be sensitive to particular 

regions of the IMF 

o 𝐻𝛼 emission versus emission in other bands: 

diagnostics of ratio of very massive stars per unit total mass, 

i.e. shape of the IMF at the upper mass end 

o lower mass IMF: Na I doublet and the Wing-Ford molecular 

FeH band. Both absorption features only produced in M type 

stars but not in M giants! -> only red dwarfs! 

Strength of these two features measures the ratio of M dwarfs 

to K dwarfs (~0.1 − 0.3𝑀⊙ stars to ~0.3 − 0.5𝑀⊙ stars) 

Figure 5 van Dokkum & Conroy 2012, copyright to AAS 
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• van Dokkrum & Conroy find features that are not consistent with 

galactic field IMFs. Instead they found an IMF that continues to rise 

down to 𝑀~0.1𝑀⊙ (rather than having a turnover) -> highly 

debated. 

 
Figure 6van Dokkum & Conroy 2011, copyright to AAS, average spectra of the Virgo and Coma cluster ellipticals and model 
predictions. 

  

9.1.2.2 Mass to Light Ratio Methods 

• measure mass independent from starlight 

o gravitational lensing 

o dynamical modelling of the system 

• divide mass map by light map to form mass-light ratio 

• dark matter? 
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9.1.3 Binaries 

9.1.3.1 Finding Binaries 

1767 (!) John Mitchel performed a statistical analysis of the star 

distribution on the sky and concluded that there are much too many close 

pairs than would be expected from random placement! (Poisson 

distribution only described on 1838!) 

• Spectroscopic binaries: spectral lines show periodic radial velocity 

variations -> limited to close binaries because of long periods 

• Eclipsing binaries: periodic light curve variations (occultation 

probabilities higher for very close binaries and also their orbit times 

are shorter) 

• Visual binaries: stars are far enough apart to resolve them 

9.1.3.2 Binary Properties 

• Binary fraction is a 

strong function of mass 

• extremely broad period 

separation (distance) 

distribution 

• close companions are 

much more likely to have 

comparable masses to the 

primary than if randomly 

sampled from IMF. 

Long-period companions are 

consistent with randomly 

drawn from IMF.  

 

 

 

 

Figure 7 Kouwenhoven, M.B.N. 2006, PhD 
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9.2 THEORY 
Things we would like to explain: 

• slope of the power-law at high masses 

• location of the peak mass 

• little to zero variation with galactic environments 

• origins of the distribution in binary properties 

 

9.2.1 The Power-law Tail 
𝑑𝑁

𝑑𝑚
∝ 𝑚−Γ   with Γ ≈ 2.3   (𝑆𝑎𝑙𝑝𝑡𝑒𝑟′𝑠 𝑣𝑎𝑙𝑢𝑒) 

9.2.1.1 Competitive Accretion 

A number of seed stars is formed and then begins to accrete mass at a 

rate that is a function of their mass. 

Assume  

𝑑𝑚

𝑑𝑡
∝ 𝑚𝜂 

We start with mass 𝑚0, accretion rate 𝑚0̇  at a time 𝑡0. Solving the ODE 

gives: 

𝑚(𝑡) = 𝑚0 {
[1 − (𝜂 − 1)𝜏]1/(1−𝜂), 𝜂 ≠ 1

exp(𝜏) , 𝜂 = 0
 

𝜏 = 𝑡/(𝑚0/𝑚0̇ ) time measured in units of the initial mass-doubling time. 

𝜂 = 1 gives the usual exponential growth, 𝜂 > 1 grows even faster (to 

infinite in finite time). 

 

Example: population of stars with 𝑚0, but all with slightly different values 

of 𝜏 at which they stop growing. What will the mass distribution of the 

resulting population be? 

If 𝑑𝑁/𝑑𝜏 is the distribution of stopping times, then 

𝑑𝑁

𝑑𝑚
∝

𝑑𝑁/𝑑𝜏

𝑑𝑚/𝑑𝜏
= 𝑚(𝜏)−𝜂

𝑑𝑁

𝑑𝜏
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➔ power-law distribution in mass with index – 𝜂 going from 

𝑚(𝜏𝑚𝑖𝑛) to 𝑚(𝜏𝑚𝑎𝑥) 

➔ index will depend on index of the accretion law 𝜂. What 

is 𝜂? 

point mass accreting from uniform, infinite medium: 𝑚 ∝ 𝑚2̇   (Hoyle, 

Bondi) close to the actual slope of −2.3. 

 

Fig.: Bate, M. R. 2009a, Mon. Not. Roy. Astron. Soc., 392, 590, 0811.0163 

 

Problems: 

• depends on choice of initial conditions (e.g. 𝛼𝑣𝑖𝑟~1, no initial 

density structure) 
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• works only without feedback to drive turbulence or eject gas. 

• Competitive accretion requires a ‘global’ collapse where all the stars 

fall together into a region where they can compete 

• IMF peak is not reproduced 

 

9.2.1.2 Turbulent fragmentation 

Power-law slope a result of turbulence physics. 

Initially Padoan et al. 1997 

Assumption: 

• Shocks repeatedly passing through an isothermal medium produces 

a broad range of density distributions 

• stars form wherever a local region happens to become self-

gravitating 

 

Suppose a density field smooth on a scale ℓ. The mass of an object of 

density 𝜌 then is: 

𝑚~𝜌ℓ3 

Total mass of all objects with density between 𝜌 and 𝜌 + 𝑑𝜌 is 

𝑑𝑀𝑡𝑜𝑡~𝜌 𝓅(𝜌)𝑑𝜌 

𝓅(𝜌): density PDF 

 

Total number of objects in the mass range [𝑚, 𝑚 + 𝑑𝑚] on size scale ℓ: 

𝑑𝑁ℓ

𝑑𝑚
=

𝑑𝑀𝑡𝑜𝑡

𝑚
~ℓ−3 ∫ 𝓅(𝜌)𝑑𝜌 

 

To filter out the grav. bound objects: critical density 

𝐺𝑚2

ℓ
~𝑚𝜎(ℓ)2   ⟹    𝜌𝑐𝑟𝑖𝑡~

𝜎(ℓ)2

𝐺ℓ2    
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𝜎(ℓ) = 𝑐𝑠 (
ℓ

ℓ𝑠
)

1/2
: linewidth-size relation 

 

Thus:     𝜌𝑐𝑟𝑖𝑡~
𝑐𝑠

2

𝐺ℓ𝑠ℓ
   (lower limit of integral) 

 

Next steps: 
𝑑𝑁

𝑑𝑚
∝ ∫

𝑑𝑁ℓ

𝑑𝑚
𝑑ℓ   to get total  number of objects 

 

Assume form of 𝓅(𝜌) 

Result (IMF) depends only on 𝑐𝑠 and ℓ𝑠 (sonic length) 

At mass> sonic mass (𝑀𝑠 ≈ 𝑐𝑠
2ℓ𝑠/𝐺) the result gives approx. the right 

power-law index. 

Problems: 

Abbildung 7 The IMF predicted by an analytical model of turbulent fragmentation by Hopkins 2012. (Philip F. Hopkins 

Monthly Notices of the Royal Astronomical Society, Volume 423, Issue 3, July 2012, Pages 2037–2044, 
https://doi.org/10.1111/j.1365-2966.2012.20731.x) 
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• choice of PDF rigorous  

• dependence on ℓ𝑠 problematic (is not constant) 

• does not answer why gravitationally bound regions don’t sub-

fragment 

• IMF peak not explained 

 

9.2.2 The peak of the IMF 

9.2.2.1 Basic theory 

• Power-law is scale-free 

• peak has a definite mass scale 

o set by the physical process! 

• isothermal model cannot explain the peak! 

Qualitative argument: 

The system we described contains four energies: thermal energy, bulk 

kinetic energy, magnetic energy, gravitational potential. 

➔ 3 dimensionless ratios determine the behavior of the 

system 

ℳ =
𝜎

𝑐𝑠
                   𝛽 =

8𝜋𝜌𝑐𝑠
2

𝐵2
                    𝑛𝐽 =

𝜌𝐿3

𝑐𝑠
3/√𝐺3𝜌

 

 

 

 

Scaling of these ratios with density 𝜌, velocity dispersion 𝜎, magnetic field 

strength 𝐵, and length scale 𝐿: 

ℳ ∝ 𝜎                     𝛽 ∝ 𝜌𝐵−2                      𝑛𝐽 ∝ 𝜌
3
2𝐿^3   

 

• Assume scaling: 𝜌 → 𝑥𝜌, 𝐿 → 𝑥−1/2𝐿, 𝐵 → 𝑥1/2𝐵 

• Then all ratios stay the same!  

𝐸𝑘𝑖𝑛/𝐸𝑡ℎ    𝐸𝑡ℎ/𝐸𝑚𝑎𝑔   𝐸𝑡ℎ/𝐸𝑔𝑟𝑎𝑣 

        Jeans number 
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• Two systems (one with: 𝜌, 𝐿, 𝐵, and one with: 𝑥𝜌, 𝑥−1/2𝐿, 𝑥1/2𝐵) 

behave the same! 

• If the first system fragments and forms a star, the second will too 

• The masses of those stars are different though! 

o 1. star 𝑀 ∝ 𝜌𝐿3 

o 2. star 𝑀 ∝ (𝑥𝜌) (𝑥−
1

2𝐿)
3

= 𝑥−
1

2𝜌𝐿3 

Isothermal gas is scale-free! 

If we have a model involving only isothermal gas with turbulence, 

magnetic fields, gravity, and this model creates stars of a given mass 𝑀, 

then we can rescale the system to obtain an arbitrarily different mass. 

To explain the IMF peak we need to involve some additional physics. 

9.2.2.2 The IMF from Galactic Properties 

 

Hypothesis: The IMF is set at the outer scale of the turbulence, where the 

MCs join the atomic ISM. Something in this outer scale picks out the 

characteristic mass of stars at the IMF peak. 

 

Simplest: IMF peak is set by the Jeans mass at the mean density of the 

cloud: 

𝑀𝑝𝑒𝑎𝑘 ∝
𝑐𝑠

3

√𝐺3�̅�
 

Problems: 

• MCs don’t have the same density (temperature is about equal) 

• varying the density leads to a factor ~ 3 difference in 𝑀𝑝𝑒𝑎𝑘between 

104 and 106 M⊙ clouds. 

• cancelling this with higher temperature (because of higher density) 

seems to be very coincidental. 

 

Less simple: IMF peak is set by the sound speed and the normalization of 

the linewidth-size relation. 
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𝑀𝑝𝑒𝑎𝑘 ∝
𝑐𝑠

2ℓ𝑠

𝐺
 

Assume a cloud of mass 𝑀 and radius 𝑅 

𝛼𝑣𝑖𝑟~
𝜎2𝑅

𝐺𝑀
 ⇒   𝜎~√𝛼𝑣𝑖𝑟

𝐺𝑀

𝑅
 

This is the velocity dispersion at the outer scale of the cloud. The Mach 

number on this scale is: 

ℳ =
𝜎

𝑐𝑠
~√𝛼𝑣𝑖𝑟

𝐺𝑀

𝑅𝑐𝑠
2 

The sonic length scale is the length scale where ℳ~1 (𝜎 scales with ℓ1/2). 

ℓ𝑠~
𝑅

ℳ2
~

𝑐𝑠
2

𝛼𝑣𝑖𝑟𝐺Σ
 

 

𝑀𝑝𝑒𝑎𝑘~
𝑐𝑠

4

𝛼𝑣𝑖𝑟𝐺2Σ
 

 

Note that: 

 

𝑀𝐽

ℳ
~

𝑐𝑠
3

√𝐺3�̅�
 √

𝑅𝑐𝑠
2

𝛼𝑣𝑖𝑟𝐺𝑀
~

𝑐𝑠
4

𝛼𝑣𝑖𝑟𝐺2Σ
~𝑀𝑝𝑒𝑎𝑘  

 

• naturally explains why MCs in the MW make stars at the same mass 

• regions with much higher Σ produce much different 𝑀𝑝𝑒𝑎𝑘 

• cancelling with higher 𝑇 ?? 

 

9.2.2.3 Non-Isothermal Fragmentation 

 Relax the isothermal assumption on small scales. 
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FIXED EXQUATION OF STATE 

• low n, main heating by CR and FUV, cooling by lines (CO, CII) 

• heating per nucleus constant, cooling increases with density -> 

temperature decreases with increasing n 

 

• If 𝑛 > 𝑛𝑐𝑟𝑖𝑡(CO) shielding becomes important -> T decreases further 

 

• 𝑛 > 105 − 106 cm−3 ≈ 10−18g cm−3 lines become optically thick 

and cooling mainly by dust (fixed rate) 

o heating by gas collapse (compression) 

o increasing collapse speed (𝑡𝑓𝑓 ∝ 1/𝑛) -> heating rate increases 

with n -> temperature grows 

Abbildung 8 Masunaga & Inutsuka, 2000, copyright to AAS 
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• 𝑛 > 10−13g cm−3 gas becomes optically thick to dust thermal 

emission -> adiabatic compression 

 

 

For filaments, particularly important. 

Filaments can collapse only if 𝑇 ∝ 𝜌𝑥<0 

Collapse stops if 𝑇 ∝ 𝜌𝑥>0 

 

Filaments will collapse until 𝑛~10−18g cm−3 and then break up into 

spheres to collapse further (Larson 2005, Kawachi & Hanawa 1998) 

 

Simple equation of state (EOS) 

𝑇 = {
4.4𝜌18

−0.27  𝜌18 < 1

4.4𝜌18
0.07   𝜌18 ≥ 1

 

𝜌18 = 𝜌/(10−18g cm−3)  

At 𝜌18 = 1 the Bonnor-Ebert mass is 𝑀𝐵𝐸 = 0.067 M⊙ (close to the 

observed peak of 𝑀 = 0.2 M⊙. 

Problem: 

• Doesn’t explain SF in high density SF regions like Orion Bar. 

• EOS does not account for heating by massive stars 

RADIATIVE MODELS 

Radiative feedback shuts off fragmentation at a characteristic mass scale 

that sets the peak of the IMF 

Assumptions: 

We form a small proto-star that radiates at a rate 𝐿. 

The gas at a distance R then has a temperature 

𝐿 ≈ 4𝜋𝑅2𝜎𝑇4 
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The Bonnor-Ebert mass as a function of 𝑇 

𝑀𝐵𝐸 ≈
𝑐𝑠

3

√𝐺3𝜌
= √(

𝑘𝐵𝑇

𝜇𝑚𝐻𝐺
)

3 1

𝜌
  

𝑀𝐵𝐸  depends on 𝑅. At small R, 𝑇 is large and 𝑀𝐵𝐸  is also large. At large R, 

𝑇 drops and 𝑀𝐵𝐸  drops as well. 

Compare 𝑀𝐵𝐸  with the mass enclosed in the radius 𝑅 

𝑀 ≈ (
1

36𝜇
)

1
10

(
𝑘𝐵

𝐺𝜇𝑚𝐻
)

6
5

(
𝐿

𝜎
)

3
10

𝜌−
1
5 

 

𝐿 at this stage is dominated by the accretion 

𝐿 ≈ 𝜓�̇� 

𝜓 ≈ 1014erg g−1, and 

�̇� ≈ 𝑀√𝐺𝜌 

Then 

 

𝑀 ≈ (
1

36𝜇
)

1
7

(
𝑘𝐵

𝐺𝜇𝑚𝐻
)

12
7

(
𝜓

𝜎
)

3
7

𝜌−
1

14 

= 0.3 (
𝑛

100 cm−3
)

−1/14

M⊙ 

with 𝑛 = 𝜌/(𝜇𝑚𝐻) 

Good match with observations. Simulations seem to confirm that 

radiative feedback can pick out a characteristic IMF peak mass. 
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